\qquad
\qquad
\qquad

Directions: Read the scenario and answer the questions below.
Scenario 1: In 2018, the current population of Little Town is 32,000 and town officials estimate that the population will continue to grow by 900 every year.
a. What is the initial value (y-intercept) and what does it represent in this situation?
32,000 \rightarrow current

b. What is the constant rate of change (slope) and what does it represent in this situation?
$000 \rightarrow$ pop ration
\% 900
Cress year
c. Write an equation that models the population, x years from now using the formula $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.

$y=900 x+32,000$

d. What will the population of the town be in 2026 years?

e. In what year will the population reach 45,500 people?

Homework: Linear Equations Word Problems
Directions: Read the scenario and answer the questions below.
Scenario 1: In 2018, the current population of Little Town is 32,000 and town officials estimate that the population will continue to grow by 900 every year.
a. What is the initial value (y-intercept) and what does it represent in this situation?
b. What is the constant rate of change (slope) and what does it represent in this situation?
c. Write an equation that models the population, x years from now using the formula $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.
d. What will the population of the town be in 2026 years?
e. In what year will the population reach 45,500 people?

Scenario 2: Immediately after giving birth on May $1^{\text {st }}$, one woman weighed 177 pounds (lbs). She loses approximately 4 lbs per month. Her goal is to get back to her prep pregnancy weight of 135 lbs .
a. What is the initial value (y-intercept) and what does it represent in this situation?

$177 \mathrm{lbs} \rightarrow$ weight after pregnancy

b. What is the constant rate of change (slope) and what does it represent in this situation?
$-4 \mathrm{lb} \rightarrow$
drop
4 lbs
per
month
c. Write an equation that models the woman's weight loss per month using the formula $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.

$$
y=-4 x+177
$$

d. What will her weight be in 3.5 months (August $15^{\text {th }}$) after giving birth?

$$
\begin{array}{ll}
y=-4(3.5)+177 & \text { she will weight } \\
y=-14+177 & 1631 \mathrm{bs} \text {. } \\
y=1631 \mathrm{bs} & \text { in } 3.5 \text { mont }
\end{array}
$$

e. In what month will she reach her goal of 135 lbs ?

Scenario 2: Immediately after giving birth on May $1^{\text {st }}$, one woman weighed 177 pounds (lbs). She loses approximately 4 lbs per month. Her goal is to get back to her prep pregnancy weight of 135 lbs .
a. What is the initial value (y-intercept) and what does it represent in this situation?
b. What is the constant rate of change (slope) and what does it represent in this situation?
c. Write an equation that models the woman's weight loss per month using the formula $\mathbf{y}=\mathbf{m x}+\mathbf{b}$.
d. What will her weight be in 3.5 months (August $15^{\text {th }}$) after giving birth?
e. In what month will she reach her goal of 135 lbs?

