\qquad
\qquad
\qquad

Looking at Functions

A function works like a machine. Numbers are put into the machine one at a time, and then the rule performs the operation(s) on each input to determine each output. For example, when $x=3$ is put into a machine with the rule $y=5 x-7$, the rule multiplies the input, 3 , by 5 and then subtracts 7 to get the output, which is 8 . This input and output can be written as an ordered pair: $(3,8)$. Then it can be placed on an $x y$-coordinate graph.
a. Find the output of the function machine at right when the input is $x=4$.
b. Likewise, find y when $x=-1$ and $x=10$.
c. If the output of this relation is 45 , what was the input? That is, if $y=45$, then what is x ? Is there more than one possible input?
inputs
$x=4$

outputs

8-118. Some relationships are special in that they are called functions. Below are two relationships, one of which $\left(y=x^{2}-2\right)$ is a function and the other, ($x=y^{2}-2$), is not. Look at the graph and table of values below for each relationship and discuss with your team why you think the relationship in part (a) is a function and the one in part (b) is not. Use your ideas to create a definition of a function. Be prepared to share your ideas with the rest of the class. Use these questions to guide your discussion:
a. What is similar about the two relationships?
b. What is different about the two relationships?
c. What can we predict about the outputs for each relationship for a given input?

$y=x^{2}-2$							
x	-3	-2	-1	0	1	2	3
y	7	2	-1	-2	-1	2	7

$x=y^{2}-2$							
x	7	2	-1	-2	-1	2	7
y	-3	-2	-1	0	1	2	3

8-119. Examine each of the relationships below. Compare the inputs and outputs of each relation and decide if the relationship is a function. Explain your reasoning. Use your definition of a function from problem 8-118 to help you justify your conclusion.
a.

$$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline \boldsymbol{x} & 7 & -2 & 0 & 4 & 9 & -3 & 6 \\
\hline \boldsymbol{y} & 6 & -3 & 4 & 2 & 10 & -3 & 0 \\
\hline
\end{array}
$$

c.

e.

\boldsymbol{x}	\boldsymbol{y}
-8	11
4	3
11	-8
6	3
-8	11

b.

\boldsymbol{x}	3	-1	2	0	1	2	9
\boldsymbol{y}	4	-5	9	7	4	-8	2

d.

f.

